Ads
related to: life cycle of stars printable worksheetsteacherspayteachers.com has been visited by 100K+ users in the past month
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Try Easel
Search results
Results from the WOW.Com Content Network
Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution A mass-radius plot ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Following this stage, the star will push its outer layers into the surrounding space to form an object known as a planetary nebula, while the core of the star itself will cool into a small, dense remnant called a white dwarf star. Marked on the lower timeline are where our Sun and solar twins 18 Sco and HIP 102152 are in this life cycle.
Even though extremely long lived, those stars will eventually run out of fuel. Once all the available hydrogen has been fused stellar nucleosynthesis stops, and the remaining helium slowly cools by radiation. Gravity contracts the star until electron degeneracy pressure compensates and it goes off the main sequence, i.e. becomes a white dwarf. [2]
In more massive stars, helium is produced in a cycle of reactions catalyzed by carbon called the carbon-nitrogen-oxygen cycle. [209] In evolved stars with cores at 100 million kelvin and masses between 0.5 and 10 M ☉, helium can be transformed into carbon in the triple-alpha process that uses the intermediate element beryllium: [209]
The counter-intuitive existence of lithium-rich red giant stars that have gone through first dredge-up may be explained by scenarios such as mass transfer. [1] The second dredge-up The second dredge-up occurs in stars with 4–8 solar masses. When helium fusion comes to an end at the core, convection mixes the products of the CNO cycle. [2]
Even heavier stars are born onto the main sequence, with no PMS evolution. [1] At the end of a low- or intermediate-mass star's life, the star follows an analogue of the Hayashi track, but in reverse—it increases in luminosity, expands, and stays at roughly the same temperature, eventually becoming a red giant.
Nuclear fusion reaction of two helium-4 nuclei produces beryllium-8, which is highly unstable, and decays back into smaller nuclei with a half-life of 8.19 × 10 −17 s, unless within that time a third alpha particle fuses with the beryllium-8 nucleus [3] to produce an excited resonance state of carbon-12, [4] called the Hoyle state, which ...
Ads
related to: life cycle of stars printable worksheetsteacherspayteachers.com has been visited by 100K+ users in the past month