Search results
Results from the WOW.Com Content Network
To find a more precise measure of the mass requires knowledge of the inclination of the planet's orbit. A graph of measured radial velocity versus time will give a characteristic curve (sine curve in the case of a circular orbit), and the amplitude of the curve will allow the minimum mass of the planet to be calculated using the binary mass ...
An inclination of 63.4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. [3] An inclination of exactly 90° is a polar orbit, in which the spacecraft passes over the poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit.
In order to determine the unknown orbit of a body, some observations of its motion with time are required. In early modern astronomy, the only available observational data for celestial objects were the right ascension and declination, obtained by observing the body as it moved in its observation arc, relative to the fixed stars, using an optical telescope.
For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.
A positive radial velocity indicates the distance between the objects is or was increasing; a negative radial velocity indicates the distance between the source and observer is or was decreasing. William Huggins ventured in 1868 to estimate the radial velocity of Sirius with respect to the Sun, based on observed redshift of the star's light. [6]
Radial orbits have zero angular momentum and hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1 (or in the parabolic case, remains 1 ).
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...