Search results
Results from the WOW.Com Content Network
The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no other power series with this property.
Since the Parker–Sochacki method involves an expansion of the original system of ordinary differential equations through auxiliary equations, it is not simply referred to as the power series method. The Parker–Sochacki method is done before the power series method to make the power series method possible on many nonlinear problems.
Power iteration is a very simple algorithm, but it may converge slowly. The most time-consuming operation of the algorithm is the multiplication of matrix A {\displaystyle A} by a vector, so it is effective for a very large sparse matrix with appropriate implementation.
The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.
In this case the algebra of formal power series is the total algebra of the monoid of natural numbers over the underlying term ring. [76] If the underlying term ring is a differential algebra, then the algebra of formal power series is also a differential algebra, with differentiation performed term-by-term.