Search results
Results from the WOW.Com Content Network
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...
In physics, the thermal de Broglie wavelength (, sometimes also denoted by ) is a measure of the uncertainty in location of a particle of thermodynamic average momentum in an ideal gas. [1] It is roughly the average de Broglie wavelength of particles in an ideal gas at the specified temperature.
The de Broglie relation, [10] [11] [12] also known as de Broglie's momentum–wavelength relation, [4] generalizes the Planck relation to matter waves. Louis de Broglie argued that if particles had a wave nature, the relation E = hν would also apply to them, and postulated that particles would have a wavelength equal to λ = h / p .
Louis de Broglie postulated that all particles with a specific value of momentum p have a wavelength λ = h/p, where h is the Planck constant. This hypothesis was at the basis of quantum mechanics. Nowadays, this wavelength is called the de Broglie wavelength. For example, the electrons in a CRT display have a De Broglie wavelength of about 10 ...
Planck–Einstein equation and de Broglie wavelength relations P = (E/c, p) is the four-momentum, ... The De Broglie relations give the relation between them:
electron thermal de Broglie wavelength, approximate average de Broglie wavelength of electrons in a plasma: ...
This animation portrays the de Broglie phase and group velocities (in slow motion) of three free electrons traveling over a field 0.4 ångströms in width. The momentum per unit mass (proper velocity) of the middle electron is lightspeed, so that its group velocity is 0.707 c. The top electron has twice the momentum, while the bottom electron ...
De Broglie also proposed that the wavelength λ for a moving particle was equal to h/p where p is the particle's momentum. The period (one cycle of the wave) is equal to 1/ f . This precise Compton periodicity of a matter wave is said to be the necessary condition for a clock, with the implication that any such matter particle may be regarded ...