Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
The hyperchromic effect is the striking increase in absorbance of DNA upon denaturation. The two strands of DNA are bound together mainly by the stacking interactions, hydrogen bonds and hydrophobic effect between the complementary bases. The hydrogen bond limits the resonance of the aromatic ring so the absorbance of the sample is limited as well.
Melting curve analysis is an assessment of the dissociation characteristics of double-stranded DNA during heating. As the temperature is raised, the double strand begins to dissociate leading to a rise in the absorbance intensity, hyperchromicity.
In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.
In a two-state system, folding and unfolding rates dominate the observed relaxation rates below and above the denaturation midpoint (Cm). This gives rise to the terminology of folding and unfolding arms for the limbs of the chevron. A priori information on the Cm of a protein can be obtained from equilibrium experiments.
Denaturation Mapping is a form of optical mapping, first described in 1966. It is used to characterize DNA molecules without the need for amplification or sequencing . It is based on the differences between the melting temperatures of AT-rich and GC-rich regions. [ 1 ]
Denaturation midpoint of a protein is defined as the temperature (T m) or concentration of denaturant (C m) at which both the folded and unfolded states are equally populated at equilibrium (assuming two-state protein folding). T m is often determined using a thermal shift assay.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.