Search results
Results from the WOW.Com Content Network
"If the essential frequency range is limited to B cycles per second, 2B was given by Nyquist as the maximum number of code elements per second that could be unambiguously resolved, assuming the peak interference is less than half a quantum step. This rate is generally referred to as signaling at the Nyquist rate and 1/(2B) has been termed a ...
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
When a bandpass signal is sampled slower than its Nyquist rate, the samples are indistinguishable from samples of a low-frequency alias of the high-frequency signal. That is often done purposefully in such a way that the lowest-frequency alias satisfies the Nyquist criterion, because the bandpass signal is still uniquely represented and ...
If the essential frequency range is limited to cycles per second, was given by Nyquist as the maximum number of code elements per second that could be unambiguously resolved, assuming the peak interference is less than half a quantum step. This rate is generally referred to as signaling at the Nyquist rate and has been termed a Nyquist interval.
Sample-rate conversion, sampling-frequency conversion or resampling is the process of changing the sampling rate or sampling frequency of a discrete signal to obtain a new discrete representation of the underlying continuous signal. [1]
Important signals of this sort include a radio's intermediate-frequency (IF), radio-frequency (RF) signal, and the individual channels of a filter bank. If n > 1, then the conditions result in what is sometimes referred to as undersampling, bandpass sampling, or using a sampling rate less than the Nyquist rate (2f H). For the case of a given ...
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:
Reduce high-frequency signal components with a digital lowpass filter. Decimate the filtered signal by M; that is, keep only every M th sample. Step 2 alone creates undesirable aliasing (i.e. high-frequency signal components will copy into the lower frequency band and be mistaken for lower frequencies). Step 1, when necessary, suppresses ...