Search results
Results from the WOW.Com Content Network
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop. All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
The algorithm's given problem can be a “family of problems”. [10] There are two main types of these skeletons, ‘divide and conquer’ or ‘brand and bound’. ‘Divide and conquer’ uses a map skeleton as its basis, combining this with a while skeleton to solve the problem. In map algorithms, functions on data are applied simultaneously.
This algorithm is a randomized version of Kruskal's algorithm. Create a list of all walls, and create a set for each cell, each containing just that one cell. For each wall, in some random order: If the cells divided by this wall belong to distinct sets: Remove the current wall. Join the sets of the formerly divided cells.
In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...
Since 7 October 2024, Python 3.13 is the latest stable release, and it and, for few more months, 3.12 are the only releases with active support including for bug fixes (as opposed to just for security) and Python 3.9, [55] is the oldest supported version of Python (albeit in the 'security support' phase), due to Python 3.8 reaching end-of-life.
Column generation or delayed column generation is an efficient algorithm for solving large linear programs. The overarching idea is that many linear programs are too large to consider all the variables explicitly. The idea is thus to start by solving the considered program with only a subset of its variables.