Search results
Results from the WOW.Com Content Network
Example of the use of descriptive geometry to find the shortest connector between two skew lines. The red, yellow and green highlights show distances which are the same for projections of point P. Given the X, Y and Z coordinates of P, R, S and U, projections 1 and 2 are drawn to scale on the X-Y and X-Z planes, respectively.
The plane has two dimensions because the length of a rectangle is independent of its width. In the technical language of linear algebra, the plane is two-dimensional because every point in the plane can be described by a linear combination of two independent vectors .
Traditional geometry allowed dimensions 1 (a line or curve), 2 (a plane or surface), and 3 (our ambient world conceived of as three-dimensional space). Furthermore, mathematicians and physicists have used higher dimensions for nearly two centuries. [ 71 ]
Let H = {h 1, h 2, ..., h k} be the convex hull of P; then the farthest-point Voronoi diagram is a subdivision of the plane into k cells, one for each point in H, with the property that a point q lies in the cell corresponding to a site h i if and only if d(q, h i) > d(q, p j) for each p j ∈ S with h i ≠ p j, where d(p, q) is the Euclidean ...
This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [ 6 ] Thus for example a regression equation of the form y = d + ax + cz (with b = −1 ) establishes a best-fit plane in three-dimensional space when there are two explanatory variables.
The most basic example is the flat Euclidean plane, an idealization of a flat surface in physical space such as a sheet of paper or a chalkboard. On the Euclidean plane, any two points can be joined by a unique straight line along which the distance can be measured.
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes , whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra and calculus .