enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  3. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural network.

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Artificial neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis. Deep learning consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain ...

  5. Glossary of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_artificial...

    It is commonly used to train deep neural networks, [39] a term referring to neural networks with more than one hidden layer. [40] backpropagation through structure (BPTS) A gradient-based technique for training recurrent neural networks, proposed in a 1996 paper written by Christoph Goller and Andreas Küchler. [41] backpropagation through time ...

  6. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6] This is known as the Universal Approximation Theorem . The identity activation function does not satisfy this property.

  7. Network neuroscience - Wikipedia

    en.wikipedia.org/wiki/Network_neuroscience

    Neural networks (i.e., artificial neural networks (ANNs) or simulated neural networks (SNNs)), are a subset of machine learning and are widely used as deep learning algorithms. Gleaned from the terminology itself, the name and structure of the models are inspired by the mechanism of human brain, which simulates the way that neurons signal to ...

  8. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  9. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.