Search results
Results from the WOW.Com Content Network
Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
The definition of a tensor as a multidimensional array satisfying a transformation law traces back to the work of Ricci. [1] An equivalent definition of a tensor uses the representations of the general linear group. There is an action of the general linear group on the set of all ordered bases of an n-dimensional vector space.
Each core can do 1024 bits of FMA operations per clock, so 1024 INT1, 256 INT4, 128 INT8, and 64 FP16 operations per clock per tensor core, and most Turing GPUs have a few hundred tensor cores. [38] The Tensor Cores use CUDA Warp -Level Primitives on 32 parallel threads to take advantage of their parallel architecture. [ 39 ]
Google Tensor is a series of ARM64-based system-on-chip (SoC) processors designed by Google for its Pixel devices. It was originally conceptualized in 2016, following the introduction of the first Pixel smartphone, though actual developmental work did not enter full swing until 2020.
Tensor cores: A tensor core is a unit that multiplies two 4×4 FP16 matrices, and then adds a third FP16 or FP32 matrix to the result by using fused multiply–add operations, and obtains an FP32 result that could be optionally demoted to an FP16 result. [12]
The Tensor cores perform the result of deep learning to codify how to, for example, increase the resolution of images generated by a specific application or game. In the Tensor cores' primary usage, a problem to be solved is analyzed on a supercomputer, which is taught by example what results are desired, and the supercomputer determines a ...
Hexagon is also known as QDSP6, standing for “sixth generation digital signal processor.” According to Qualcomm, the Hexagon architecture is designed to deliver performance with low power over a variety of applications. [3] [4] Each version of Hexagon has an instruction set and a micro-architecture. These two features are intimately related.