Search results
Results from the WOW.Com Content Network
Hydroiodic acid (or hydriodic acid) is a colorless liquid. It is an aqueous solution of hydrogen iodide with the chemical formula H I. It is a strong acid, in which hydrogen iodide is ionized completely in an aqueous solution. Concentrated aqueous solutions of hydrogen iodide are usually 48% to 57% HI by mass. [2] An oxidized solution of ...
Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid.Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas.
The United States Drug Enforcement Administration (DEA) maintains lists regarding the classification of illicit drugs (see DEA Schedules).It also maintains List I of chemicals and List II of chemicals, which contain chemicals that are used to manufacture the controlled substances/illicit drugs.
Iodic acid is a white water-soluble solid with the chemical formula HIO 3. Its robustness contrasts with the instability of chloric acid and bromic acid. Iodic acid features iodine in the oxidation state +5 and is one of the most stable oxo-acids of the halogens. When heated, samples dehydrate to give iodine pentoxide. On further heating, the ...
Aqueous hydrogen iodide is known as hydroiodic acid, which is a strong acid. Hydrogen iodide is exceptionally soluble in water: one litre of water will dissolve 425 litres of hydrogen iodide, and the saturated solution has only four water molecules per molecule of hydrogen iodide. [6]
For example, there is a weak bond between hydrogen and iodine in hydroiodic acid, making it a very strong acid. [citation needed] In the simplest case, binary acid names are formed by combining the prefix hydro-, the name of the non-hydrogen nonmetallic element, the suffix -ic, and adding acid as a second word. [1]
Thus, chemists distinguish hydrogen chloride from hydrochloric acid. The former is a gas at room temperature that reacts with water to give the acid. Once the acid has formed, the diatomic molecule can be regenerated only with difficulty, but not by normal distillation. Commonly the names of the acid and the molecules are not clearly ...
The cleavage of ethers by hydrobromic or hydroiodic acid proceeds by protonation of the ether, followed by displacement by bromide or iodide. A slightly milder set of conditions uses cyclohexyl iodide (CyI, 10.0 equiv) in N,N-dimethylformamide to generate a small amount of hydrogen iodide in situ. [18]