Search results
Results from the WOW.Com Content Network
SSL 2.0 (insecure) SSL 3.0 (insecure) TLS 1.0 (deprecated) TLS 1.1 (deprecated) TLS 1.2 TLS 1.3 EV certificate SHA-2 certificate ECDSA certificate BEAST CRIME POODLE (SSLv3) RC4 FREAK Logjam Protocol selection by user Microsoft Internet Explorer (1–10) [n 20] Windows Schannel: 1.x: Windows 3.1, 95, NT, [n 21] [n 22] Mac OS 7, 8: No SSL/TLS ...
HTTPS Everywhere was inspired by Google's increased use of HTTPS [8] and is designed to force the usage of HTTPS automatically whenever possible. [9] The code, in part, is based on NoScript's HTTP Strict Transport Security implementation, but HTTPS Everywhere is intended to be simpler to use than No Script's forced HTTPS functionality which requires the user to manually add websites to a list. [4]
SSL 3.0 (1996) and TLS 1.0 (1999) are successors with two weaknesses in CBC-padding that were explained in 2001 by Serge Vaudenay. [28] TLS 1.1 (2006) fixed only one of the problems, by switching to random initialization vectors (IV) for CBC block ciphers, whereas the more problematic use of mac-pad-encrypt instead of the secure pad-mac-encrypt ...
This is the source code of the Chrome web browser and the reference gQUIC implementation. It contains a standalone gQUIC and QUIC client and server programs that can be used for testing. Browsable source code. This version is also the basis of LINE's stellite and Google's cronet. MsQuic: MIT License: C
HSTS addresses this problem [2]: §2.4 by informing the browser that connections to the site should always use TLS/SSL. The HSTS header can be stripped by the attacker if this is the user's first visit. Google Chrome, Mozilla Firefox, Internet Explorer, and Microsoft Edge attempt to limit this problem by including a "pre-loaded" list of HSTS sites.
As SSL evolved into Transport Layer Security (TLS), HTTPS was formally specified by RFC 2818 in May 2000. Google announced in February 2018 that its Chrome browser would mark HTTP sites as "Not Secure" after July 2018. [50] This move was to encourage website owners to implement HTTPS, as an effort to make the World Wide Web more secure.
TLS acceleration (formerly known as SSL acceleration) is a method of offloading processor-intensive public-key encryption for Transport Layer Security (TLS) and its predecessor Secure Sockets Layer (SSL) [1] to a hardware accelerator.
A server uses it to deliver to the client (e.g. a web browser) a set of hashes of public keys that must appear in the certificate chain of future connections to the same domain name. For example, attackers might compromise a certificate authority, and then mis-issue certificates for a web origin. To combat this risk, the HTTPS web server serves ...