Search results
Results from the WOW.Com Content Network
Although the term Miller effect normally refers to capacitance, any impedance connected between the input and another node exhibiting gain can modify the amplifier input impedance via this effect. These properties of the Miller effect are generalized in the Miller theorem. The Miller capacitance due to undesired parasitic capacitance between ...
The Hollomon–Jaffe parameter (HP), also generally known as the Larson–Miller parameter, [1] describes the effect of a heat treatment at a temperature for a certain time. [2] This parameter is especially used to describe the tempering of steels, so that it is also called tempering parameter.
The original Miller effect is implemented by capacitive impedance connected between the two nodes. Miller theorem generalizes Miller effect as it implies arbitrary impedance connected between the nodes. It is supposed also a constant coefficient ; then the expressions above are valid. But modifying properties of Miller theorem exist even when ...
F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: r = A ⋅ e − Δ H / ( R ⋅ T ) {\displaystyle r=A\cdot e^{-\Delta H/(R\cdot T)}} Where r is the creep process rate, A is a constant, R is the universal gas constant , T is the absolute temperature , and Δ H {\displaystyle \Delta ...
Pole splitting is a phenomenon exploited in some forms of frequency compensation used in an electronic amplifier.When a capacitor is introduced between the input and output sides of the amplifier with the intention of moving the pole lowest in frequency (usually an input pole) to lower frequencies, pole splitting causes the pole next in frequency (usually an output pole) to move to a higher ...
Miller–Bravais indices. With hexagonal and rhombohedral lattice systems, it is possible to use the Bravais–Miller system, which uses four indices (h k i ℓ) that obey the constraint h + k + i = 0. Here h, k and ℓ are identical to the corresponding Miller indices, and i is a redundant index.
Using Miller's theorem, the circuit of Figure 4 is transformed to that of Figure 5, which shows the Miller capacitance C M on the input side of the circuit. The size of C M is decided by equating the current in the input circuit of Figure 5 through the Miller capacitance, say i M, which is:
Because of the Miller effect in the common source amplifier the input and the output transmission line are coupled. For example, for voltage inverting and current amplifying the input and the output form a shielded balanced line. The current is increasing in the output transmission line with every subsequent transistor, and therefore less and ...