Search results
Results from the WOW.Com Content Network
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit ...
Numpy is one of the most popular Python data libraries, and TensorFlow offers integration and compatibility with its data structures. [66] Numpy NDarrays, the library's native datatype, are automatically converted to TensorFlow Tensors in TF operations; the same is also true vice versa. [66]
Facial recognition systems have been deployed in advanced human–computer interaction, video surveillance, law enforcement, passenger screening, decisions on employment and housing and automatic indexing of images. [4] [5] Facial recognition systems are employed throughout the world today by governments and private companies. [6]
The terms corners and interest points are used somewhat interchangeably and refer to point-like features in an image, which have a local two-dimensional structure. The name "Corner" arose since early algorithms first performed edge detection , and then analyzed the edges to find rapid changes in direction (corners).
Facial recognition – a technology that enables the matching of faces in digital images or video frames to a face database, which is now widely used for mobile phone facelock, smart door locking, etc. [42] Emotion recognition – a subset of facial recognition, emotion recognition refers to the process of classifying human emotions.
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.
In cognitive neuroscience, Peter F. Dominey analysed a related process related to the modelling of sequence processing in the mammalian brain, in particular speech recognition in the human brain. [8] The basic idea also included a model of temporal input discrimination in biological neuronal networks. [ 9 ]