enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Syntactic parsing (computational linguistics) - Wikipedia

    en.wikipedia.org/wiki/Syntactic_parsing...

    These all only support projective trees so far, wherein edges do not cross given the token ordering from the sentence. For non-projective trees, Nivre in 2009 modified arc-standard transition-based parsing to add the operation Swap (swap the top two tokens on the stack, assuming the formulation where the next token is always added to the stack ...

  3. Augmented transition network - Wikipedia

    en.wikipedia.org/wiki/Augmented_transition_network

    An augmented transition network or ATN is a type of graph theoretic structure used in the operational definition of formal languages, used especially in parsing relatively complex natural languages, and having wide application in artificial intelligence. An ATN can, theoretically, analyze the structure of any sentence, however complicated.

  4. Lexical analysis - Wikipedia

    en.wikipedia.org/wiki/Lexical_analysis

    A lexical token is a string with an assigned and thus identified meaning, in contrast to the probabilistic token used in large language models. A lexical token consists of a token name and an optional token value. The token name is a category of a rule-based lexical unit. [2]

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    BERT is trained by masked token prediction and next sentence prediction. As a result of this training process, BERT learns contextual, latent representations of tokens in their context, similar to ELMo and GPT-2. [4] It found applications for many natural language processing tasks, such as coreference resolution and polysemy resolution. [5]

  6. Neural machine translation - Wikipedia

    en.wikipedia.org/wiki/Neural_machine_translation

    In the translation task, a sentence =, (consisting of tokens ) in the source language is to be translated into a sentence =, (consisting of tokens ) in the target language. The source and target tokens (which in the simple event are used for each other in order for a particular game ] vectors, so they can be processed mathematically.

  7. Methods of neuro-linguistic programming - Wikipedia

    en.wikipedia.org/wiki/Methods_of_neuro...

    The methods of neuro-linguistic programming are the specific techniques used to perform and teach neuro-linguistic programming, [1] [2] which teaches that people are only able to directly perceive a small part of the world using their conscious awareness, and that this view of the world is filtered by experience, beliefs, values, assumptions, and biological sensory systems.

  8. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  9. Petri net - Wikipedia

    en.wikipedia.org/wiki/Petri_net

    In an abstract sense relating to a Petri net diagram, a transition of a Petri net may fire if it is enabled, i.e. there are sufficient tokens in all of its input places; when the transition fires, it consumes the required input tokens, and creates tokens in its output places. A firing is atomic, i.e. a single non-interruptible step.