Search results
Results from the WOW.Com Content Network
The volume of a spherical cap with a curved base can be calculated by considering two spheres with radii and , separated by some distance , and for which their surfaces intersect at =. That is, the curvature of the base comes from sphere 2.
where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...
The 3-sphere is the boundary of a -ball in four-dimensional space. The -sphere is the boundary of an -ball. Given a Cartesian coordinate system, the unit -sphere of radius can be defined as:
Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.
An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.