Search results
Results from the WOW.Com Content Network
Capability curve of an electrical generator describes the limits of the active and reactive power that the generator can provide. The curve represents a boundary of all operating points in the MW/MVAr plane; it is typically drawn with the real power on the horizontal axis, and, for the synchronous generator , resembles a letter D in shape, thus ...
An initial SFRA test is carried out to obtain the signature of the transformer frequency response by injecting various discreet frequencies. This reference is then used for future comparisons. A change in winding position, degradation in the insulation, etc. will result in change in capacitance or inductance thereby affecting the measured curves.
The bathtub curve is a particular shape of a failure rate graph. This graph is used in reliability engineering and deterioration modeling. The 'bathtub' refers to the shape of a line that curves up at both ends, similar in shape to a bathtub. The bathtub curve has 3 regions: The first region has a decreasing failure rate due to early failures.
When a transformer, electric motor, electromagnet, or other inductive load is switched off, the inductor increases the voltage across the switch or breaker and cause extended arcing. When a transformer is switched off on its primary side, inductive kick produces a voltage spike on the secondary that can damage insulation and connected loads. [3]
Rainflow counting identifies the closed cycles in a stress-strain curve. The rainflow-counting algorithm is used in calculating the fatigue life of a component in order to convert a loading sequence of varying stress into a set of constant amplitude stress reversals with equivalent fatigue damage.
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
In rotordynamical systems, the eigenfrequencies often depend on the rotation rates due to the induced gyroscopic effects or variable hydrodynamic conditions in fluid bearings.
Instantaneous overcurrent requires that the current exceeds a predetermined level for the circuit breaker to operate. Time overcurrent protection operates based on a current vs time curve. Based on this curve, if the measured current exceeds a given level for the preset amount of time, the circuit breaker or fuse will operate.