Search results
Results from the WOW.Com Content Network
The density varies with temperature, but not linearly: as the temperature increases, the density rises to a peak at 3.98 °C (39.16 °F) and then decreases; [33] the initial increase is unusual because most liquids undergo thermal expansion so that the density only decreases as a function of temperature.
The relationship between specific gravity (s.g.; i.e., water-specific gravity, the density relative to water) and degrees Baumé is a function of the temperature. Different versions of the scale may use different reference temperatures. Different conversions formulae can therefore be found in various handbooks. As an example, a 2008 handbook [1 ...
Historically, on the Fahrenheit scale the freezing point of water was 32 °F, and the boiling point was 212 °F (at standard atmospheric pressure). This put the boiling and freezing points of water 180 degrees apart. [8] Therefore, a degree on the Fahrenheit scale was 1 ⁄ 180 of the interval between the freezing point and the boiling point ...
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
The symbol for degrees Rankine is °R [2] (or °Ra if necessary to distinguish it from the Rømer and Réaumur scales). By analogy with the SI unit kelvin, some authors term the unit Rankine, omitting the degree symbol. [4] [5] Some temperatures relating the Rankine scale to other temperature scales are shown in the table below.
Empirical scales measure temperature in relation to convenient and stable parameters or reference points, such as the freezing and boiling point of water. Absolute temperature is based on thermodynamic principles: using the lowest possible temperature as the zero point, and selecting a convenient incremental unit. Celsius, Kelvin, and ...
* Normal human body temperature is 36.8 °C ±0.7 °C, or 98.2 °F ±1.3 °F. The commonly given value 98.6 °F is simply the exact conversion of the nineteenth-century German standard of 37 °C. Since it does not list an acceptable range, it could therefore be said to have excess (invalid) precision.
The difference of temperatures between the freezing- and boiling-points of water under standard atmospheric pressure shall be called 100 degrees. (The same increment as the Celsius scale) Thomson's best estimates at the time were that the temperature of freezing water was 273.7 K and the temperature of boiling water was 373.7 K. [33]