enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The parameter is the probability that a coin lands heads up ("H") when tossed. can take on any value within the range 0.0 to 1.0. For a perfectly fair coin, =. Imagine flipping a fair coin twice, and observing two heads in two tosses ("HH"). Assuming that each successive coin flip is i.i.d., then the probability of observing HH is (=) = =

  3. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    Next, let r be the actual probability of obtaining heads in a single toss of the coin. This is the property of the coin which is being investigated. Using Bayes' theorem, the posterior probability density of r conditional on h and t is expressed as follows:

  4. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    Tossing a coin. Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives. It is a form of sortition which inherently has two possible outcomes. The party who calls the side that is facing up when the coin ...

  5. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.

  6. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Consider a coin with probability p of landing on heads and probability 1 − p of landing on tails. The maximum surprise is when p = 1/2 , for which one outcome is not expected over the other. In this case a coin flip has an entropy of one bit (similarly, one trit with equiprobable values contains log 2 ⁡ 3 {\displaystyle \log _{2}3} (about 1 ...

  7. Gambler's fallacy - Wikipedia

    en.wikipedia.org/wiki/Gambler's_fallacy

    If a fair coin is flipped 21 times, the probability of 21 heads is 1 in 2,097,152. The probability of flipping a head after having already flipped 20 heads in a row is ⁠ 1 / 2 ⁠. Assuming a fair coin: The probability of 20 heads, then 1 tail is 0.5 20 × 0.5 = 0.5 21; The probability of 20 heads, then 1 head is 0.5 20 × 0.5 = 0.5 21

  8. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    Consider the flip of two fair coins; let and be discrete random variables associated with the outcomes of the first and second coin flips respectively. Each coin flip is a Bernoulli trial and has a Bernoulli distribution. If a coin displays "heads" then the associated random variable takes the value 1, and it takes the value 0 otherwise. The ...

  9. Alias method - Wikipedia

    en.wikipedia.org/wiki/Alias_method

    This is the biased coin flip. Otherwise, return K i. An alternative formulation of the probability table, proposed by Marsaglia et al. [5] as the square histogram method, avoids the computation of y by instead checking the condition x < V i = (U i + i − 1)/n in the third step.