Search results
Results from the WOW.Com Content Network
An example of these amphiphilic molecules is the lipids that comprise the cell membrane. Another example is soap, which has a hydrophilic head and a hydrophobic tail, allowing it to dissolve in both water and oil. Hydrophilic and hydrophobic molecules are also known as polar molecules and nonpolar molecules, respectively. Some hydrophilic ...
The phosphate ester portion ("head") is hydrophilic, whereas the remainder of the molecule, the fatty acid "tail", is hydrophobic. These are important components for the formation of lipid bilayers. Phosphatidylethanolamines, phosphatidylcholines, and other phospholipids are examples of phosphatidates.
The hydrophilic end usually contains a negatively charged phosphate group, and the hydrophobic end usually consists of two "tails" that are long fatty acid residues. [ 4 ] In aqueous solutions, phospholipids are driven by hydrophobic interactions , which result in the fatty acid tails aggregating to minimize interactions with the water molecules.
The phospholipid amphiphiles are the major structural component of cell membranes. Amphiphiles are the basis for a number of areas of research in chemistry and biochemistry, notably that of lipid polymorphism. Organic compounds containing hydrophilic groups at both ends of the molecule are called bolaamphiphilic.
An example of a carrier ionophore is valinomycin, a molecule that transports a single potassium cation. Carrier ionophores may be proteins or other molecules. Channel formers that introduce a hydrophilic pore into the membrane, allowing ions to pass through without coming into contact with the membrane's hydrophobic interior. [8]
[21] [22] They are made of a hydrocarbon chain that terminates with a carboxylic acid group; this arrangement confers the molecule with a polar, hydrophilic end, and a nonpolar, hydrophobic end that is insoluble in water. The fatty acid structure is one of the most fundamental categories of biological lipids and is commonly used as a building ...
The hydrophobic core of the phospholipid bilayer is constantly in motion because of rotations around the bonds of lipid tails. [13] Hydrophobic tails of a bilayer bend and lock together. However, because of hydrogen bonding with water, the hydrophilic head groups exhibit less movement as their rotation and mobility are constrained. [13]
Sterols have a hydrophobic four-membered fused ring rigid structure, and a small polar head group. Cholesterol is bio-synthesised from mevalonate via a squalene cyclisation of terpenoids . Cell membranes require high levels of cholesterol – typically an average of 20% cholesterol in the whole membrane, increasing locally in raft areas up to ...