enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Minkowski problem for polytopes - Wikipedia

    en.wikipedia.org/wiki/Minkowski_problem_for_poly...

    The sets of vectors representing two polytopes can be added by taking the union of the two sets and, when the two sets contain parallel vectors with the same sign, replacing them by their sum. The resulting operation on polytope shapes is called the Blaschke sum .

  3. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    The sixteen dark-red points (on the right) form the Minkowski sum of the four non-convex sets (on the left), each of which consists of a pair of red points. Their convex hulls (shaded pink) contain plus-signs (+): The right plus-sign is the sum of the left plus-signs.

  4. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  5. Resolution (algebra) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(algebra)

    In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution [1]) is an exact sequence of modules (or, more generally, of objects of an abelian category) that is used to define invariants characterizing the structure of a specific module or object of this category.

  6. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms.

  7. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  8. Linear separability - Wikipedia

    en.wikipedia.org/wiki/Linear_separability

    Suppose some data points, each belonging to one of two sets, are given and we wish to create a model that will decide which set a new data point will be in. In the case of support vector machines , a data point is viewed as a p -dimensional vector (a list of p numbers), and we want to know whether we can separate such points with a ( p − 1 ...

  9. Projections onto convex sets - Wikipedia

    en.wikipedia.org/wiki/Projections_onto_convex_sets

    In mathematics, projections onto convex sets (POCS), sometimes known as the alternating projection method, is a method to find a point in the intersection of two closed convex sets. It is a very simple algorithm and has been rediscovered many times. [1] The simplest case, when the sets are affine spaces, was analyzed by John von Neumann.