enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length.

  3. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is

  4. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    However, generally they are considerably slower (typically by a factor 2–10) than fast, non-cryptographic random number generators. These include: Stream ciphers. Popular choices are Salsa20 or ChaCha (often with the number of rounds reduced to 8 for speed), ISAAC, HC-128 and RC4. Block ciphers in counter mode.

  5. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  6. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    For Monte Carlo simulations, an LCG must use a modulus greater and preferably much greater than the cube of the number of random samples which are required. This means, for example, that a (good) 32-bit LCG can be used to obtain about a thousand random numbers; a 64-bit LCG is good for about 2 21 random samples (a little over two million), etc ...

  7. Random number generation - Wikipedia

    en.wikipedia.org/wiki/Random_number_generation

    Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance.

  8. Ziggurat algorithm - Wikipedia

    en.wikipedia.org/wiki/Ziggurat_algorithm

    Otherwise, choose new random numbers and go back to step 1. Step 1 amounts to choosing a low-resolution y coordinate. Step 3 tests if the x coordinate is clearly within the desired density function without knowing more about the y coordinate. If it is not, step 4 chooses a high-resolution y coordinate, and step 5 does the rejection test.

  9. Random number - Wikipedia

    en.wikipedia.org/wiki/Random_number

    Random numbers are frequently used in algorithms such as Knuth's 1964-developed algorithm [1] for shuffling lists. (popularly known as the Knuth shuffle or the Fisher–Yates shuffle, based on work they did in 1938). In 1999, a new feature was added to the Pentium III: a hardware-based random number generator.