Search results
Results from the WOW.Com Content Network
regex - Henry Spencer's regular expression libraries ArgList: C BSD RE2: RE2: C++ BSD Go, Google Sheets, Gmail, G Suite Henry Spencer's Advanced Regular Expressions Tcl: C BSD RGX RGX : C++ based component library P6R RXP Titan IC: RTL Proprietary: hardware-accelerated search acceleration using RegEx available for ASIC, FPGA and cloud.
The closeness of a match is measured in terms of the number of primitive operations necessary to convert the string into an exact match. This number is called the edit distance between the string and the pattern. The usual primitive operations are: [1] insertion: cot → coat; deletion: coat → cot
The difference between the two algorithms consists in that the optimal string alignment algorithm computes the number of edit operations needed to make the strings equal under the condition that no substring is edited more than once, whereas the second one presents no such restriction. Take for example the edit distance between CA and ABC.
A regular expression (shortened as regex or regexp), [1] sometimes referred to as rational expression, [2] [3] is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings , or for input validation .
Various algorithms exist that solve problems beside the computation of distance between a pair of strings, to solve related types of problems. Hirschberg's algorithm computes the optimal alignment of two strings, where optimality is defined as minimizing edit distance. Approximate string matching can be formulated in terms of edit distance.
The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.