Search results
Results from the WOW.Com Content Network
Note: "lc" stands for the leading coefficient, the coefficient of the highest degree of the variable. This algorithm computes not only the greatest common divisor (the last non zero r i), but also all the subresultant polynomials: The remainder r i is the (deg(r i−1) − 1)-th subresultant polynomial.
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
Every polynomial with rational coefficients, may be factorized, in a unique way, as the product of a rational number and a polynomial with integer coefficients, which is primitive (that is, the greatest common divisor of the coefficients is 1), and has a positive leading coefficient (coefficient of the term of the highest degree). For example:
p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n. The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n ...
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or any expression. For example, in the polynomial 7 x 2 − 3 x y + 1.5 + y , {\displaystyle 7x^{2}-3xy+1.5+y,} with variables x {\displaystyle x} and y {\displaystyle y} , the first two terms have the coefficients 7 and −3.
Let () be a polynomial equation, where P is a univariate polynomial of degree n.If one divides all coefficients of P by its leading coefficient, one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial.
So if two leading coefficients are in the same column, then a row operation of type 3 could be used to make one of those coefficients zero. Then by using the row swapping operation, one can always order the rows so that for every non-zero row, the leading coefficient is to the right of the leading coefficient of the row above.