Search results
Results from the WOW.Com Content Network
By mole fraction (i.e., by quantity of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other trace gases. Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere.
Photosynthetic prokaryotic organisms that produced O 2 as a byproduct lived long before the first build-up of free oxygen in the atmosphere, [5] perhaps as early as 3.5 billion years ago. The oxygen cyanobacteria produced would have been rapidly removed from the oceans by weathering of reducing minerals, [citation needed] most notably ferrous ...
For example, a number of approaches are being explored for oxygen generation. Polymeric membranes operating at ambient or warm temperatures, for example, may be able to produce oxygen-enriched air (25-50% oxygen). Ceramic membranes can provide high-purity oxygen (90% or more) but require higher temperatures (800-900 deg C) to operate.
Stage 2 (2.45–1.85 Ga): O 2 produced, rising to values of 0.02 and 0.04 atm, but absorbed in oceans and seabed rock. Stage 3 (1.85–0.85 Ga): O 2 starts to gas out of the oceans, but is absorbed by land surfaces. No significant change in oxygen level. Stages 4 and 5 (0.85 Ga – present): Other O 2 reservoirs filled; gas accumulates in ...
The oxygen cycle demonstrates how free oxygen is made available in each of these regions, as well as how it is used. The oxygen cycle is the biogeochemical cycle of oxygen atoms between different oxidation states in ions, oxides, and molecules through redox reactions within and between the spheres/reservoirs of the planet Earth. [1]
Due to the strong electronegativity of oxygen and oxygen-containing molecules, they can easily capture free electrons to form negatively charged air ions, most of which are superoxide radicals ·O 2 −, so NAI is mainly composed of negative oxygen ions, also called air negative oxygen ions.
The concentration of oxygen in the air (mmols O 2 per liter of air) therefore decreases at the same rate as the atmospheric pressure. [26] At sea level, where the ambient pressure is about 100 kPa , oxygen constitutes 21% of the atmosphere and the partial pressure of oxygen ( P O 2 ) is 21 kPa (i.e. 21% of 100 kPa).
[13] [50] At 25 °C and 1 standard atmosphere (101.3 kPa) of air, freshwater can dissolve about 6.04 milliliters (mL) of oxygen per liter, and seawater contains about 4.95 mL per liter. [51] At 5 °C the solubility increases to 9.0 mL (50% more than at 25 °C) per liter for freshwater and 7.2 mL (45% more) per liter for sea water.