Search results
Results from the WOW.Com Content Network
The Sun–Earth Lagrangian points L 2 and L 1 are usually given as 1.5 million km from Earth. If the mass of the smaller object (M E) is much smaller than the mass of the larger object (M S), then the quintic equation can be greatly reduced and L 1 and L 2 are at approximately the radius of the Hill sphere, given by:
The case of the 105th cyclotomic polynomial is interesting because 105 is the least positive integer that is the product of three distinct odd prime numbers (3×5×7) and this polynomial is the first one that has a coefficient other than 1, 0, or −1: [3]
The following names are assigned to polynomials according to their degree: [2] [3] [4] Special case – zero (see § Degree of the zero polynomial, below) Degree 0 – non-zero constant [5] Degree 1 – linear; Degree 2 – quadratic; Degree 3 – cubic; Degree 4 – quartic (or, if all terms have even degree, biquadratic) Degree 5 – quintic
In 1824, the Abel–Ruffini theorem established that polynomial equations of a degree of five or higher could have no solutions in radicals.It became clear to mathematicians since then that one needed to go beyond radicals in order to express the solutions to equations of the fifth and higher degrees.
In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2 −1) is a right arithmetic shift, a (0) results in no operation (since 2 0 = 1 is the multiplicative identity element), and a (2 1) results in a left arithmetic shift ...
Abel–Ruffini theorem refers also to the slightly stronger result that there are equations of degree five and higher that cannot be solved by radicals. This does not follow from Abel's statement of the theorem, but is a corollary of his proof, as his proof is based on the fact that some polynomials in the coefficients of the equation are not ...
Fuchs's theorem (differential equations) Fuglede's theorem (functional analysis) Full employment theorem (theoretical computer science) Fulton–Hansen connectedness theorem (algebraic geometry) Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics)
In his article, [1] Milne-Thomson considers the problem of finding () when 1. u ( x , y ) {\displaystyle u(x,y)} and v ( x , y ) {\displaystyle v(x,y)} are given, 2. u ( x , y ) {\displaystyle u(x,y)} is given and f ( z ) {\displaystyle f(z)} is real on the real axis, 3. only u ( x , y ) {\displaystyle u(x,y)} is given, 4. only v ( x , y ...