enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Smile contains k-means and various more other algorithms and results visualization (for java, kotlin and scala). Julia contains a k-means implementation in the JuliaStats Clustering package. KNIME contains nodes for k-means and k-medoids. Mahout contains a MapReduce based k-means. mlpack contains a C++ implementation of k-means. Octave contains ...

  3. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  4. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  5. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Due to the expensive iterative procedure and density estimation, mean-shift is usually slower than DBSCAN or k-Means. Besides that, the applicability of the mean-shift algorithm to multidimensional data is hindered by the unsmooth behaviour of the kernel density estimate, which results in over-fragmentation of cluster tails. [17]

  6. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  7. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    Julia contains a k-medoid implementation of the k-means style algorithm (fast, but much worse result quality) in the JuliaStats/Clustering.jl package. KNIME includes a k-medoid implementation supporting a variety of efficient matrix distance measures, as well as a number of native (and integrated third-party) k-means implementations

  8. Data stream clustering - Wikipedia

    en.wikipedia.org/wiki/Data_stream_clustering

    Data stream clustering has recently attracted attention for emerging applications that involve large amounts of streaming data. For clustering, k-means is a widely used heuristic but alternate algorithms have also been developed such as k-medoids, CURE and the popular [citation needed] BIRCH.

  9. Balanced clustering - Wikipedia

    en.wikipedia.org/wiki/Balanced_clustering

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us