enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Saddlepoint approximation method - Wikipedia

    en.wikipedia.org/wiki/Saddlepoint_approximation...

    The saddlepoint approximation method, initially proposed by Daniels (1954) [1] is a specific example of the mathematical saddlepoint technique applied to statistics, in particular to the distribution of the sum of independent random variables.

  3. Method of steepest descent - Wikipedia

    en.wikipedia.org/wiki/Method_of_steepest_descent

    In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is ...

  4. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  5. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    If D(a, b) < 0 then (a, b) is a saddle point of f. If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy ...

  6. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  7. Ladyzhenskaya–Babuška–Brezzi condition - Wikipedia

    en.wikipedia.org/wiki/Ladyzhenskaya–Babuška...

    For saddle point problems, however, many discretizations are unstable, giving rise to artifacts such as spurious oscillations. The LBB condition gives criteria for when a discretization of a saddle point problem is stable. The condition is variously referred to as the LBB condition, the Babuška–Brezzi condition, or the "inf-sup" condition.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .