Search results
Results from the WOW.Com Content Network
Suppose that we have a sample of 99 test scores with a mean of 100 and a standard deviation of 1. If we assume all 99 test scores are random observations from a normal distribution, then we predict there is a 1% chance that the 100th test score will be higher than 102.33 (that is, the mean plus 2.33 standard deviations), assuming that the 100th ...
The choice between these two groups needs to be justified. Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as ...
The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as ...
The bootstrap is very versatile as it is distribution-free and it does not rely on restrictive parametric assumptions, but rather on empirical approximate methods with asymptotic guarantees. Traditional parametric hypothesis tests are more computationally efficient but make stronger structural assumptions.
Parametric tests, such as those used in exact statistics, are exact tests when the parametric assumptions are fully met, but in practice, the use of the term exact (significance) test is reserved for non-parametric tests, i.e., tests that do not rest on parametric assumptions [citation needed]. However, in practice, most implementations of non ...
If data are ordinal, a non-parametric alternative to this test should be used such as Kruskal–Wallis one-way analysis of variance. If the variances are not known to be equal, a generalization of 2-sample Welch's t-test can be used.
In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design. It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population ...
Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test. Typical ...