enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Transport theorem - Wikipedia

    en.wikipedia.org/wiki/Transport_theorem

    The transport theorem (or transport equation, rate of change transport theorem or basic kinematic equation or Bour's formula, named after: Edmond Bour) is a vector equation that relates the time derivative of a Euclidean vector as evaluated in a non-rotating coordinate system to its time derivative in a rotating reference frame.

  5. Galileo's law of odd numbers - Wikipedia

    en.wikipedia.org/wiki/Galileo's_law_of_odd_numbers

    In classical mechanics and kinematics, Galileo's law of odd numbers states that the distance covered by a falling object in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain distance during an arbitrary time interval, it will cover 3, 5, 7, etc. times that distance ...

  6. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    The kinematics equations for a parallel chain, or parallel robot, formed by an end-effector supported by multiple serial chains are obtained from the kinematics equations of each of the supporting serial chains. Suppose that m serial chains support the end-effector, then the transformation from the base to the end-effector is defined by m ...

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these. This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).

  8. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    One may instead change to a coordinate frame fixed in the rotating body, in which the moment of inertia tensor is constant. Using a reference frame such as that at the center of mass, the frame's position drops out of the equations. In any rotating reference frame, the time derivative must be replaced so that the equation becomes

  9. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The equations of translational kinematics can easily be extended to planar rotational kinematics for constant angular acceleration with simple variable exchanges: = + = + = (+) = + (). Here θ i and θ f are, respectively, the initial and final angular positions, ω i and ω f are, respectively, the initial and final angular velocities, and α ...