Search results
Results from the WOW.Com Content Network
The frost line—also known as frost depth or freezing depth—is most commonly the depth to which the groundwater in soil is expected to freeze. The frost depth depends on the climatic conditions of an area, the heat transfer properties of the soil and adjacent materials, and on nearby heat sources.
Frost heave is the process by which the freezing of water-saturated soil causes the deformation and upward thrust of the ground surface. [3] This process can distort and crack pavement, damage the foundations of buildings and displace soil in regular patterns. Moist, fine-grained soil at certain temperatures is most susceptible to frost heaving.
Photograph taken 21 March 2010 in Norwich, Vermont. Frost heaving (or a frost heave) is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated into the soil (the freezing front or freezing boundary).
As water permeates the ice, it becomes segregated into separate pieces of ice in the form of lenses, ribbons, needles, layers or strands of ice. [4] Needle ice is commonly found along stream banks or soil terraces. It is also found by gaps around stones and others areas of patterned ground. The variety of soil properties also affects where it ...
White frost is a solid deposition of ice that forms directly from water vapour contained in air. White frost forms when relative humidity is above 90% and the temperature below −8 °C (18 °F), and it grows against the wind direction, since air arriving from windward has a higher humidity than leeward air, but the wind must not be strong ...
Frost heave is the process by which the freezing of water-saturated soil causes the deformation and upward thrust of the ground surface. [3] This process can distort and crack pavement, damage the foundations of buildings and displace soil in regular patterns. Moist, fine-grained soil at certain temperatures is most susceptible to frost heaving.
Frost damage can occur as cracks, stone splinters and swelling of the material. When water freezes, the volume of water increases by 9 %. [citation needed] When the volumetric moisture content exceeds 91 %, then the volume increase of water in the pores of the material caused by freezing cannot be absorbed by sufficient empty pores. This causes ...
Basal glacial motion be enhanced due to water accumulation underneath a glacier sourced from surface or basal ice melt. Hydraulic pressure of subglacial water can reduce the friction at the bed, allowing the glacier to suddenly shift and generate seismic waves. [10] [16] This type of cryoseism can be very brief, or may last for many minutes. [8]