Search results
Results from the WOW.Com Content Network
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
Glucose-6-phosphate can be used in other metabolic pathways or dephosphorylated to free glucose. Whereas free glucose can easily diffuse in and out of the cell, the phosphorylated form (glucose-6-phosphate) is locked in the cell, a mechanism by which intracellular glucose levels are controlled by cells.
The release of glucagon is precipitated by low levels of blood glucose, whereas high levels of blood glucose stimulates cells to produce insulin. Because the level of circulatory glucose is largely determined by the intake of dietary carbohydrates, diet controls major aspects of metabolism via insulin. [ 18 ]
The catalytic site is found on the lumenal face of the membrane, and removes the phosphate group from glucose 6-phosphate produced during glycogenolysis or gluconeogenesis. Free glucose is transported out of the endoplasmic reticulum via GLUT7 and released into the bloodstream via GLUT2 for uptake by other cells. Muscle cells lack this enzyme ...
The glucose diffuses in the beta-cell facilitated by a GLUT-2 vesicle. Inside the beta cell, the following process occurs: Glucose gets converted to glucose-6-phosphate (G6P) through glucokinase, and G6P is subsequently oxidized to form ATP. This process inhibits the ATP-sensitive potassium ion channels of the cell causing the potassium ion ...
Glucose-6-phosphate can not pass through the cell membrane, and is therefore used solely by the myocytes that produce it. In hepatocytes (liver cells), the main purpose of the breakdown of glycogen is for the release of glucose into the bloodstream for uptake by other cells.
Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose.The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active ...
Glucose reacts with oxygen in the following reaction, C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O. Carbon dioxide and water are waste products, and the overall reaction is exothermic. The reaction of glucose with oxygen releasing energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms.