Search results
Results from the WOW.Com Content Network
To convert from the usual ppmv units to ppm mass (abbreviated as ppmm, or ppm(m)), multiply by the ratio of the molar mass of CO 2 to that of air, i.e. times 1.52 (44.01 divided by 28.96). The first reproducibly accurate measurements of atmospheric CO 2 were from flask sample measurements made by Dave Keeling at Caltech in the 1950s. [ 31 ]
Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. It is a trace gas in Earth's atmosphere at 421 parts per million (ppm), [a] or about 0.042% (as of May 2022) having risen from pre-industrial levels of 280 ppm or about 0.028%.
The carbon dioxide equivalent (CO 2 e or CO 2 eq or CO 2-e or CO 2-eq) can be calculated from the GWP. For any gas, it is the mass of CO 2 that would warm the earth as much as the mass of that gas. Thus it provides a common scale for measuring the climate effects of different gases. It is calculated as GWP times mass of the other gas.
Carbon dioxide liquid/vapor equilibrium thermodynamic data: Temp. °C P vap Vapor pressure kPa H liq Heat content liquid J/g H vap Heat content vapor J/g
As an example, given a concentration of 260 mg/m 3 at sea level, calculate the equivalent concentration at an altitude of 1,800 meters: C a = 260 × 0.9877 18 = 208 mg/m 3 at 1,800 meters altitude Standard conditions for gas volumes
Air pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude. The concentration decrease is directly proportional to the pressure decrease with increasing altitude.
The interest stems from that accurate measurements of the unit cell volume, atomic weight and mass density of a pure crystalline solid provide a direct determination of the Avogadro constant. [3] The CODATA recommended value for the molar volume of silicon is 1.205 883 199 (60) × 10 −5 m 3 ⋅mol −1, with a relative standard uncertainty of ...
Note that for different gasses, the value of H n differs, according to the molar mass M: It is 10.9 for nitrogen, 9.2 for oxygen and 6.3 for carbon dioxide. The theoretical value for water vapor is 19.6, but due to vapor condensation the water vapor density dependence is highly variable and is not well approximated by this formula.