Search results
Results from the WOW.Com Content Network
More precisely Markov's theorem can be stated as follows: [2] [3] given two braids represented by elements , ′ in the braid groups ,, their closures are equivalent links if and only if ′ can be obtained from applying to a sequence of the following operations:
The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...
In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality.
Markov's principle is equivalent, in the language of real analysis, to the following principles: For each real number x , if it is contradictory that x is equal to 0, then there exists a rational number y such that 0 < y < | x |, often expressed by saying that x is apart from, or constructively unequal to, 0.
In mathematics, the Markov brothers' inequality is an inequality, proved in the 1890s by brothers Andrey Markov and Vladimir Markov, two Russian mathematicians. This inequality bounds the maximum of the derivatives of a polynomial on an interval in terms of the maximum of the polynomial. [ 1 ]
Underlying model: Following centering, the standard Gauss–Markov linear regression model for on can be represented as: = +, where denotes the unknown parameter vector of regression coefficients and denotes the vector of random errors with = and = for some unknown variance parameter >
The prototypical Markov random field is the Ising model; indeed, the Markov random field was introduced as the general setting for the Ising model. [2] In the domain of artificial intelligence, a Markov random field is used to model various low- to mid-level tasks in image processing and computer vision. [3]
The phrase Gauss–Markov is used in two different ways: Gauss–Markov processes in probability theory The Gauss–Markov theorem in mathematical statistics (in this theorem, one does not assume the probability distributions are Gaussian.)