enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov theorem - Wikipedia

    en.wikipedia.org/wiki/Markov_theorem

    More precisely Markov's theorem can be stated as follows: [2] [3] given two braids represented by elements , ′ in the braid groups ,, their closures are equivalent links if and only if ′ can be obtained from applying to a sequence of the following operations:

  3. Markov number - Wikipedia

    en.wikipedia.org/wiki/Markov_number

    All the Markov numbers on the regions adjacent to 2's region are odd-indexed Pell numbers (or numbers n such that 2n 2 − 1 is a square, OEIS: A001653), and all the Markov numbers on the regions adjacent to 1's region are odd-indexed Fibonacci numbers (OEIS: A001519). Thus, there are infinitely many Markov triples of the form

  4. Markov's inequality - Wikipedia

    en.wikipedia.org/wiki/Markov's_inequality

    In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such that the inequality is in fact an equality.

  5. Markov brothers' inequality - Wikipedia

    en.wikipedia.org/wiki/Markov_brothers'_inequality

    In mathematics, the Markov brothers' inequality is an inequality, proved in the 1890s by brothers Andrey Markov and Vladimir Markov, two Russian mathematicians. This inequality bounds the maximum of the derivatives of a polynomial on an interval in terms of the maximum of the polynomial. [ 1 ]

  6. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_theorem

    The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. [3] But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. [4] A further generalization to non-spherical errors was given by Alexander ...

  7. Chapman–Kolmogorov equation - Wikipedia

    en.wikipedia.org/wiki/Chapman–Kolmogorov_equation

    In mathematics, specifically in the theory of Markovian stochastic processes in probability theory, the Chapman–Kolmogorov equation (CKE) is an identity relating the joint probability distributions of different sets of coordinates on a stochastic process.

  8. Kolmogorov's criterion - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_criterion

    Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,

  9. Markov random field - Wikipedia

    en.wikipedia.org/wiki/Markov_random_field

    The prototypical Markov random field is the Ising model; indeed, the Markov random field was introduced as the general setting for the Ising model. [2] In the domain of artificial intelligence, a Markov random field is used to model various low- to mid-level tasks in image processing and computer vision. [3]