Search results
Results from the WOW.Com Content Network
Similarly, f is strictly logarithmically convex if and only if, in the above two expressions, strict inequality holds for all t ∈ (0, 1). The above definition permits f to be zero, but if f is logarithmically convex and vanishes anywhere in X, then it vanishes everywhere in the interior of X.
A convex mirror diagram showing the focus, focal length, centre of curvature, principal axis, etc. A convex mirror or diverging mirror is a curved mirror in which the reflective surface bulges towards the light source. [1] Convex mirrors reflect light outwards, therefore they are not used to focus light.
for all x,y ∈ dom f and 0 < θ < 1. Examples of log-concave functions are the 0-1 indicator functions of convex sets (which requires the more flexible definition), and the Gaussian function. Similarly, a function is log-convex if it satisfies the reverse inequality
A concave mirror with light rays Center of curvature. In geometry, the center of curvature of a curve is a point located at a distance from the curve equal to the radius of curvature lying on the curve normal vector. It is the point at infinity if the curvature is zero. The osculating circle to the curve is centered at the centre of curvature.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
The rows of Pascal's triangle are examples for logarithmically concave sequences. In mathematics, a sequence a = (a 0, a 1, ..., a n) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if a i 2 ≥ a i−1 a i+1 holds for 0 < i < n.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
This page was last edited on 3 October 2011, at 11:14 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...