Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the MuPAD symbolic engine allowing access to symbolic computing abilities.
Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.
APMonitor: APMonitor is a mathematical modeling language for describing and solving representations of physical systems in the form of differential and algebraic equations. Armadillo is C++ template library for linear algebra; includes various decompositions, factorisations, and statistics functions; its syntax is similar to MATLAB.
The solution is the weighted average of six increments, where each increment is the product of the size of the interval, , and an estimated slope specified by function f on the right-hand side of the differential equation.
In mathematics and numerical analysis, an adaptive step size is used in some methods for the numerical solution of ordinary differential equations (including the special case of numerical integration) in order to control the errors of the method and to ensure stability properties such as A-stability. Using an adaptive stepsize is of particular ...
In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients.