Search results
Results from the WOW.Com Content Network
Hydroaluminations of terminal alkynes typically produce terminal alkenylalanes as a result. Selectivity in hydroaluminations of internal alkynes is typically low, unless an electronic bias exists in the substrate (such as a phenyl ring in conjugation with the alkyne).
terminal alkynes 2100–2140 weak disubst. alkynes 2190–2260 very weak (often indistinguishable) C=O aldehyde/ketone saturated aliph./cyclic 6-membered 1720 α,β-unsaturated 1685 aromatic ketones 1685 cyclic 5-membered 1750 cyclic 4-membered 1775 aldehydes 1725 influenced by conjugation (as with ketones) carboxylic acids/derivates
Radiation therapy is used to kill cancer cells; however, normal cells are also damaged in the process. Currently, therapeutic doses of radiation can be targeted to tumors with great accuracy using linear accelerators in radiation oncology; however, when irradiating using external beam radiotherapy, the beam will always need to travel through healthy tissue, and the normal liver tissue is very ...
The acidic hydrogen on terminal alkynes can be replaced by a variety of groups resulting in halo-, silyl-, and alkoxoalkynes. The carbanions generated by deprotonation of terminal alkynes are called acetylides. [5] Internal alkynes are also considerably more acidic than alkenes and alkanes, though not nearly as acidic as terminal alkynes.
Safe and scalable synthesis of alkynes from aldehydes. Recently a safer and more scalable approach has been developed for the synthesis of alkynes from aldehydes. This protocol takes advantage of a stable sulfonyl azide, rather than tosyl azide, for the in situ generation of the Ohira−Bestmann reagent. [6]
A hydroboration reaction also takes place on alkynes. Again the mode of action is syn and secondary reaction products are aldehydes from terminal alkynes and ketones from internal alkynes. In order to prevent hydroboration across both the pi-bonds, a bulky borane like disiamyl (di-sec-iso-amyl) borane is used. [5]
The azide-alkyne Huisgen cycloaddition is a 1,3-dipolar cycloaddition between an azide and a terminal or internal alkyne to give a 1,2,3-triazole. Rolf Huisgen [ 1 ] was the first to understand the scope of this organic reaction .
The Meyer–Schuster rearrangement is the chemical reaction described as an acid-catalyzed rearrangement of secondary and tertiary propargyl alcohols to α,β-unsaturated ketones if the alkyne group is internal and α,β-unsaturated aldehydes if the alkyne group is terminal. [1]