Search results
Results from the WOW.Com Content Network
Fusion reactors are not subject to catastrophic meltdown. [121] It requires precise and controlled temperature, pressure and magnetic field parameters to produce net energy, and any damage or loss of required control would rapidly quench the reaction. [122] Fusion reactors operate with seconds or even microseconds worth of fuel at any moment.
When the time comes to actually try to make electricity from a tokamak-based reactor, some of the neutrons produced in the fusion process would be absorbed by a liquid metal blanket and their kinetic energy would be used in heat transfer processes to ultimately turn a generator.
Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion. Fusion reactions for reactors usually combine light atomic nuclei of deuterium and tritium to form an alpha particle (Helium-4 nucleus) and a neutron, where the energy is released in the form of the kinetic energy of the ...
Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator.The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics.
The FRC was first observed in laboratories in the late 1950s during theta pinch experiments with a reversed background magnetic field. [3] The original idea was attributed to the Greek scientist and engineer Nicholas C. Christofilos who developed the concept of E-layers for the Astron fusion reactor.
A gyrotron converter first guides fusion product ions as a beam into a 10-meter long microwave cavity filled with a 10-tesla magnetic field, where 155 MHz microwaves are generated and converted to a high voltage DC output through rectennas. The Field-Reversed Configuration reactor ARTEMIS in this study was designed with an efficiency of 75% ...
Fusion ignition is the point at which a nuclear fusion reaction becomes self-sustaining. This occurs when the energy being given off by the reaction heats the fuel mass more rapidly than it cools. In other words, fusion ignition is the point at which the increasing self-heating of the nuclear fusion removes the need for external heating. [ 1 ]
The Lockheed Martin Compact Fusion Reactor (CFR) was a fusion power project at Lockheed Martin’s Skunk Works. [1] Its high-beta configuration, which implies that the ratio of plasma pressure to magnetic pressure is greater than or equal to 1 (compared to tokamak designs' 0.05), allows a compact design and expedited development.