Search results
Results from the WOW.Com Content Network
Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. [ clarification needed ] [ 1 ] Atmospheric instability encourages vertical motion, which is directly correlated to different types of weather systems and their severity.
By contrast, other conditions, such as a less warm air parcel or a parcel in an atmosphere with a temperature inversion (in which the temperature increases above a certain height) have much less capacity to support vigorous upward air movement, thus the potential energy level (CAPE) would be much lower, as would the probability of thunderstorms.
Convective Instability, denoted in the red highlighted region ("positive area"), on a Skew-T log-P diagram. In meteorology, convective instability or stability of an air mass refers to its ability to resist vertical motion. A stable atmosphere makes vertical movement difficult, and small vertical disturbances dampen out and disappear.
Unstable areas are in yellow (slightly) and red (highly) while the stable zone is in blue. The lifted index ( LI ) is the temperature difference between the environment Te(p) and an air parcel lifted adiabatically Tp(p) at a given pressure height in the troposphere (lowest layer where most weather occurs) of the atmosphere , usually 500 hPa ( mb ).
On an atmospheric sounding, it is the layer between the level of free convection (LFC) and the equilibrium level (EL). The FCL is important to a variety of convective processes and to severe thunderstorm forecasting. It is the layer of instability, the "positive area" on thermodynamic diagrams where an ascending air parcel is warmer than its ...
Typically, due to aerodynamic drag, there is a wind gradient in the wind flow ~100 meters above the Earth's surface—the surface layer of the planetary boundary layer. Wind speed increases with increasing height above the ground, starting from zero [4] due to the no-slip condition. [5]
Convective inhibition (CIN or CINH) [1] is a numerical measure in meteorology that indicates the amount of energy that will prevent an air parcel from rising from the surface to the level of free convection. CIN is the amount of energy required to overcome the negatively buoyant energy the environment exerts on an air parcel.
Stable stratification of fluids occurs when each layer is less dense than the one below it. Unstable stratification is when each layer is denser than the one below it. Buoyancy forces tend to preserve stable stratification; the higher layers float on the lower ones. In unstable stratification, on the other hand, buoyancy forces cause convection ...