Search results
Results from the WOW.Com Content Network
Sum of Natural Numbers (second proof and extra footage) includes demonstration of Euler's method. What do we get if we sum all the natural numbers? response to comments about video by Tony Padilla; Related article from New York Times; Why –1/12 is a gold nugget follow-up Numberphile video with Edward Frenkel
The number 19 is not a harshad number in base 10, because the sum of the digits 1 and 9 is 10, and 19 is not divisible by 10. In base 10, every natural number expressible in the form 9R n a n, where the number R n consists of n copies of the single digit 1, n > 0, and a n is a positive integer less than 10 n and multiple of n, is a harshad ...
As with Adobe Acrobat, Nitro PDF Pro's reader is free; but unlike Adobe's free reader, Nitro's free reader allows PDF creation (via a virtual printer driver, or by specifying a filename in the reader's interface, or by drag-'n-drop of a file to Nitro PDF Reader's Windows desktop icon); Ghostscript not needed. PagePlus: Proprietary: No
The digital root (also repeated digital sum) of a natural number in a given radix is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached.
Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
For example, the sum of the first n natural numbers can be denoted as ∑ i = 1 n i {\displaystyle \sum _{i=1}^{n}i} For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closed-form expressions for the result.
In number theory, a Smith number is a composite number for which, in a given number base, the sum of its digits is equal to the sum of the digits in its prime factorization in the same base. In the case of numbers that are not square-free , the factorization is written without exponents, writing the repeated factor as many times as needed.