enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Compact object - Wikipedia

    en.wikipedia.org/wiki/Compact_object

    As they cool they will redden and dim until they eventually become dark black dwarfs. White dwarfs were observed in the 19th century, but the extremely high densities and pressures they contain were not explained until the 1920s. The equation of state for degenerate matter is "soft", meaning that adding more mass will result in a smaller object ...

  3. White dwarf - Wikipedia

    en.wikipedia.org/wiki/White_dwarf

    Sirius B, which is a white dwarf, can be seen as a faint point of light to the lower left of the much brighter Sirius A. A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: in an Earth sized volume, it packs a mass that is comparable to the Sun.

  4. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    Following the Pauli exclusion principle, there can be only one fermion occupying each quantum state. In a degenerate gas, all quantum states are filled up to the Fermi energy. Most stars are supported against their own gravitation by normal thermal gas pressure, while in white dwarf stars the supporting force comes from the degeneracy pressure ...

  5. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/Bose–Einstein_statistics

    As the quantum concentration depends on temperature, most systems at high temperatures obey the classical (Maxwell–Boltzmann) limit, unless they also have a very high density, as for a white dwarf. Both Fermi–Dirac and Bose–Einstein become Maxwell–Boltzmann statistics at high temperature or at low concentration.

  6. Universal wavefunction - Wikipedia

    en.wikipedia.org/wiki/Universal_wavefunction

    The concept of universal wavefunction was introduced by Hugh Everett in his 1956 PhD thesis draft The Theory of the Universal Wave Function. [8] It later received investigation from James Hartle and Stephen Hawking [9] who derived the Hartle–Hawking solution to the Wheeler–deWitt equation to explain the initial conditions of the Big Bang ...

  7. Electron degeneracy pressure - Wikipedia

    en.wikipedia.org/wiki/Electron_degeneracy_pressure

    In white dwarf stars, the positive nuclei are completely ionized – disassociated from the electrons – and closely packed – a million times more dense than the Sun. At this density gravity exerts immense force pulling the nuclei together. This force is balanced by the electron degeneracy pressure keeping the star stable. [4]

  8. van Maanen 2 - Wikipedia

    en.wikipedia.org/wiki/Van_Maanen_2

    The high mass density of white dwarfs was demonstrated in 1925 by American astronomer Walter Adams when he measured the gravitational redshift of Sirius B as 21 km/s. [18] In 1926, British astrophysicist Ralph Fowler used the new theory of quantum mechanics to show that these stars are supported by electron gas in a degenerate state.

  9. Fermi–Dirac statistics - Wikipedia

    en.wikipedia.org/wiki/Fermi–Dirac_statistics

    Another example of a system that is not in the classical regime is the system that consists of the electrons of a star that has collapsed to a white dwarf. Although the temperature of white dwarf is high (typically T = 10 000 K on its surface [23]), its high electron concentration and the small mass of each electron precludes using a classical ...