Search results
Results from the WOW.Com Content Network
DNA nanotechnology, specifically, is an example of bottom-up molecular self-assembly, in which molecular components spontaneously organize into stable structures; the particular form of these structures is induced by the physical and chemical properties of the components selected by the designers. [19]
Nucleic acid design is used in DNA nanotechnology to design strands which will self-assemble into a desired target structure. These include examples such as DNA machines, periodic two- and three-dimensional lattices, polyhedra, and DNA origami. [2]
Single-stranded and double-stranded versions of these materials have been created using, for example, DNA, LNA, and RNA. One- and two-dimensional forms of nucleic acids (e.g., single strands, linear duplexes, and plasmids) (Fig. 1) are important biological machinery for the storage and transmission of genetic information.
The term has also been used to describe the hierarchical assembly of artificial nucleic acid building blocks used in DNA nanotechnology. [3] The quaternary structure of DNA refers to the formation of chromatin. Because the human genome is so large, DNA must be condensed into chromatin, which consists of repeating units known as nucleosomes.
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.
Download as PDF; Printable version; In other projects Wikimedia Commons; ... This is the category for articles related to DNA nanotechnology as well as DNA computing
For example, DNA nanotechnology or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to ...
Molecular models are useful in the design of structures for DNA nanotechnology. Here, individual DNA tiles (model at left) self-assemble into a highly ordered DNA 2D-nanogrid (AFM image at right). There are various uses of DNA molecular modeling in Genomics and Biotechnology research applications, from DNA repair to PCR and DNA nanostructures ...