enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    The symmetric group on a set of size n is the Galois group of the general polynomial of degree n and plays an important role in Galois theory. In invariant theory, the symmetric group acts on the variables of a multi-variate function, and the functions left invariant are the so-called symmetric functions.

  3. Dihedral group of order 6 - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group_of_order_6

    Only the neutral elements are symmetric to the main diagonal, so this group is not abelian. Cayley table as general (and special) linear group GL(2, 2) In mathematics, D 3 (sometimes alternatively denoted by D 6) is the dihedral group of degree 3 and order 6. It equals the symmetric group S 3. It is also the smallest non-abelian group. [1]

  4. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids. [1] [2]

  5. Automorphisms of the symmetric and alternating groups

    en.wikipedia.org/wiki/Automorphisms_of_the...

    For every symmetric group other than S 6, there is no other conjugacy class consisting of elements of order 2 that has the same number of elements as the class of transpositions. Or as follows: Each permutation of order two (called an involution ) is a product of k > 0 disjoint transpositions, so that it has cyclic structure 2 k 1 n −2 k .

  6. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...

  7. Group action - Wikipedia

    en.wikipedia.org/wiki/Group_action

    For example, the action of any group on itself by left multiplication is free. This observation implies Cayley's theorem that any group can be embedded in a symmetric group (which is infinite when the group is). A finite group may act faithfully on a set of size much smaller than its cardinality (however such an action cannot be free).

  8. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    D nh is the symmetry group for a "regular" n-gonal prism and also for a "regular" n-gonal bipyramid. D nd is the symmetry group for a "regular" n-gonal antiprism, and also for a "regular" n-gonal trapezohedron. D n is the symmetry group of a partially rotated ("twisted") prism. The groups D 2 and D 2h are noteworthy in that there is no special ...

  9. Covering groups of the alternating and symmetric groups

    en.wikipedia.org/wiki/Covering_groups_of_the...

    The alternating group, symmetric group, and their double covers are related in this way, and have orthogonal representations and covering spin/pin representations in the corresponding diagram of orthogonal and spin/pin groups. Explicitly, S n acts on the n-dimensional space R n by permuting coordinates (in matrices, as permutation matrices).