Search results
Results from the WOW.Com Content Network
To interact with host plant proteins many Agrobacterium virulence proteins encoded by vir genes. Agrobacterium vir gene expression occurs via the VirA-VirG sensor that results in generation of a mobile single-stranded T-DNA copy (T-strand). A processed form of VirB2 is the major component of the T-complex that is required for transformation.
Once inside the leaf the Agrobacterium remains in the intercellular space and transfers the gene of interest as part of the Ti plasmid-derived T-DNA in high copy numbers into the plant cells. The gene transfer occurs when the plant signals are induced and physical contact is made between the plant cells and the bacteria.
A number of methods are available to transfer DNA into plant cells. Some vector-mediated methods are: Agrobacterium-mediated transformation is the easiest and most simple plant transformation. Plant tissue (often leaves) are cut into small pieces, e.g. 10x10mm, and soaked for ten minutes in a fluid containing suspended Agrobacterium. The ...
The vir helper plasmid contains the vir genes that originated from the Ti plasmid of Agrobacterium. These genes code for a series of proteins that cut the binary vector at the left and right border sequences, and facilitate transfer and integration of T-DNA to the plant's cells and genomes, respectively. [4]
Agrobacterium tumefaciens [3] [2] (also known as Rhizobium radiobacter) is the causal agent of crown gall disease (the formation of tumours) in over 140 species of eudicots. It is a rod-shaped, Gram-negative soil bacterium . [ 4 ]
The ability of Agrobacterium to transfer genes to plants and fungi is used in biotechnology, in particular, genetic engineering for plant improvement. Genomes of plants and fungi can be engineered by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. A modified Ti or Ri plasmid can be used.
Plant transformation vectors are plasmids that have been specifically designed to facilitate the generation of transgenic plants.The most commonly used plant transformation vectors are T-DNA binary vectors and are often replicated in both E. coli, a common lab bacterium, and Agrobacterium tumefaciens, a plant-virulent bacterium used to insert the recombinant DNA into plants.
In plants the DNA is often inserted using Agrobacterium-mediated recombination, [27] taking advantage of the Agrobacteriums T-DNA sequence that allows natural insertion of genetic material into plant cells. [28] Plant tissue are cut into small pieces and soaked in a fluid containing suspended Agrobacterium. The bacteria will attach to many of ...