Search results
Results from the WOW.Com Content Network
It is dark matter composed of constituents with an FSL much smaller than a protogalaxy. This is the focus for dark matter research, as hot dark matter does not seem capable of supporting galaxy or galaxy cluster formation, and most particle candidates slowed early. The constituents of cold dark matter are unknown.
Dark matter is a form of matter that neither emits nor absorbs light. Within physics, this behavior is characterized by dark matter not interacting with electromagnetic radiation, hence making it dark and rendering it undetectable via conventional instruments in physics. [1]
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
The dark matter can be modeled as a scalar field using two fitted parameters, mass and self-interaction. [4] [5] In this model the dark matter consists of an ultralight particle with a mass of ~10 −22 eV when there is no self-interaction.
The universe's contents include ordinary matter - stars, planets, gas, dust and all the familiar stuff on Earth, including people and popcorn - as well as dark matter, which is invisible material ...
As "dark matter", baryonic dark matter is undetectable by its emitted radiation, but its presence can be inferred from gravitational effects on visible matter. This form of dark matter is composed of "baryons", heavy subatomic particles such as protons and neutrons and combinations of these, including non-emitting ordinary atoms.
The presence of dark matter (DM) in the halo is inferred from its gravitational effect on a spiral galaxy's rotation curve.Without large amounts of mass throughout the (roughly spherical) halo, the rotational velocity of the galaxy would decrease at large distances from the galactic center, just as the orbital speeds of the outer planets decrease with distance from the Sun.
Direct detection of dark matter is the science of attempting to directly measure dark matter collisions in Earth-based experiments. Modern astrophysical measurements, such as from the Cosmic Microwave Background , strongly indicate that 85% of the matter content of the universe is unaccounted for. [ 1 ]