Search results
Results from the WOW.Com Content Network
In astronomy, dark matter is a hypothetical form of matter that does not interact with light or other electromagnetic radiation.Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed.
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.. There exists no formal definition of a WIMP, but broadly, it is an elementary particle which interacts via gravity and any other force (or forces) which is as weak as or weaker than the weak nuclear force, but also non-vanishing in strength.
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
The modern (perturbative) quantum mechanical view of the fundamental forces other than gravity is that particles of matter do not directly interact with each other, but rather carry a charge, and exchange virtual particles (gauge bosons), which are the interaction carriers or force mediators.
The universe's contents include ordinary matter - stars, planets, gas, dust and all the familiar stuff on Earth, including people and popcorn - as well as dark matter, which is invisible material ...
Collisionless: Dark matter particles interact with each other and other particles only through gravity and possibly the weak force; Dark matter constitutes about 26.5 % [12] of the mass–energy density of the universe.
The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. . Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, [1] dark matter particles in our galaxy have never been directly detected in an expe
The model does not contain any viable dark matter particle that possesses all of the required properties deduced from observational cosmology. It also does not incorporate neutrino oscillations and their non-zero masses. The development of the Standard Model was driven by theoretical and experimental particle physicists alike.