enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. pandas (software) - Wikipedia

    en.wikipedia.org/wiki/Pandas_(software)

    Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series .

  3. Exploratory data analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_data_analysis

    To illustrate, consider an example from Cook et al. where the analysis task is to find the variables which best predict the tip that a dining party will give to the waiter. [12] The variables available in the data collected for this task are: the tip amount, total bill, payer gender, smoking/non-smoking section, time of day, day of the week ...

  4. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Pandas – Python library for data analysis. PAW – FORTRAN/C data analysis framework developed at CERN. R – A programming language and software environment for statistical computing and graphics. [149] ROOT – C++ data analysis framework developed at CERN. SciPy – Python library for scientific computing.

  5. List of programming languages for artificial intelligence

    en.wikipedia.org/wiki/List_of_programming...

    The functions work on many types of data, including numerical, categorical, time series, textual, and image. [7] Mojo can run some Python programs, and supports programmability of AI hardware. It aims to combine the usability of Python with the performance of low-level programming languages like C++ or Rust. [8]

  6. List of analyses of categorical data - Wikipedia

    en.wikipedia.org/wiki/List_of_analyses_of...

    This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables.

  7. Categorical distribution - Wikipedia

    en.wikipedia.org/wiki/Categorical_distribution

    function draw_categorical(n) // where n is the number of samples to draw from the categorical distribution r = 1 s = 0 for i from 1 to k // where k is the number of categories v = draw from a binomial(n, p[i] / r) distribution // where p[i] is the probability of category i for j from 1 to v z[s++] = i // where z is an array in which the results ...

  8. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    The Burt table is the symmetric matrix of all two-way cross-tabulations between the categorical variables, and has an analogy to the covariance matrix of continuous variables. Analyzing the Burt table is a more natural generalization of simple correspondence analysis , and individuals or the means of groups of individuals can be added as ...

  9. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    This simple model is an example of binary logistic regression, and has one explanatory variable and a binary categorical variable which can assume one of two categorical values. Multinomial logistic regression is the generalization of binary logistic regression to include any number of explanatory variables and any number of categories.