Search results
Results from the WOW.Com Content Network
A method might look at how variables change with respect to some loop condition (possibly showing termination for that loop), other methods might try to transform the program's calculation to some mathematical construct and work on that, possibly getting information about the termination behaviour out of some properties of this mathematical model.
On some systems, this loop will execute ten times as expected, but on other systems it will never terminate. The problem is that the loop terminating condition (x != 1.1) tests for exact equality of two floating point values, and the way floating point values are represented in many computers will make this test fail, because they cannot ...
After a function's value is computed for that parameter or set of parameters, the result is stored in a lookup table that is indexed by the values of those parameters; the next time the function is called, the table is consulted to determine whether the result for that combination of parameter values is already available. If so, the stored ...
In computer science, the Hopcroft–Karp algorithm (sometimes more accurately called the Hopcroft–Karp–Karzanov algorithm) [1] is an algorithm that takes a bipartite graph as input and produces a maximum-cardinality matching as output — a set of as many edges as possible with the property that no two edges share an endpoint.
This suggests taking the first basis vector p 0 to be the negative of the gradient of f at x = x 0. The gradient of f equals Ax − b. Starting with an initial guess x 0, this means we take p 0 = b − Ax 0. The other vectors in the basis will be conjugate to the gradient, hence the name conjugate gradient method.
For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.
Loop-invariant code motion – this can vastly improve efficiency by moving a computation from inside the loop to outside of it, computing a value just once before the loop begins, if the resultant quantity of the calculation will be the same for every loop iteration (i.e., a loop-invariant quantity). This is particularly important with address ...
Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal ...