Search results
Results from the WOW.Com Content Network
A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation + + + = defines an algebraic hypersurface of dimension n − 1 in the Euclidean space of dimension n.
Thus a general hypersurface in a small dimension space is turned into a hyperplane in a space with much larger dimensions. Neural networks try to learn the decision boundary which minimizes the empirical error, while support vector machines try to learn the decision boundary which maximizes the empirical margin between the decision boundary and ...
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n. For a general oriented k - submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian G ~ k , n {\displaystyle {\tilde {G}}_{k,n}} , i.e. the set of all oriented k -planes in R n .
More generally, one can formulate a similar trick using the normal bundle to define the Laplace–Beltrami operator of any Riemannian manifold isometrically embedded as a hypersurface of Euclidean space. One can also give an intrinsic description of the Laplace–Beltrami operator on the sphere in a normal coordinate system.
A consequence of this theorem (and its proof) is that if f is differentiable, a level set is a hypersurface and a manifold outside the critical points of f. At a critical point, a level set may be reduced to a point (for example at a local extremum of f) or may have a singularity such as a self-intersection point or a cusp.
In the special case of vector fields on three-dimensional Euclidean space, the hypersurface-orthogonal condition is equivalent to the complex lamellar condition, as seen by rewriting ω ∧ dω in terms of the Hodge star operator as ∗ ω, ∗dω , with ∗dω being the 1-form dual to the curl vector field.
The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]